

Verification of emission-reducing procedures in naturally ventilated cow houses by using optimised measurement methods

Revision of the VERA test protocol "Housing Systems"

Authors:

Iris Beckert¹ and VERA Commission¹: Anders Peter S. Adamsen², Peter Demeyer³, Eva Gallmann⁴, Ewald Grimm⁵, Peter Kai⁶, Eberhard Hartung⁷, Sabrina Hempel⁸, Julio Mosquera⁹, Nico Ogink⁹, Paul Robin¹⁰, Bjarne Schmidt Bjerg¹¹

¹International VERA Secretariat, Gross-Umstadt; ²SEGES, Aarhus, Denmark, ³ILVO, Merelbeke, Belgium, ⁴University of Hohenheim, Agrartechnik, Stuttgart, Germany, ⁵KTBL, Darmstadt, Germany, ⁶Aarhus University, Denmark, ⁷University of Kiel, Kiel, Germany, ⁸ATB, Potsdam, Germany, ⁹Wageningen Livestock Research, Wageningen, The Netherlands, ¹⁰INRA, Rennes, France, ¹¹University of Copenhagen, IVH, Frederiksberg, Denmark

Objectives

Make environmental efficiency and operational stability of emission-reducing procedures transnationally comparable!

- By using uniform and scientific test procedures and develop a revised test and verification standard
- Meet special challenges of emission measurements in naturally ventilated animal houses

Naterial & Methods

Connect expert knowledge and results of scientific studies

from Denmark, the Netherlands, Germany, Belgium, France and Switzerland – as it is common practice during the creation of international standards.

Plan an inter-laboratory test to improve the assessment of measurement uncertainties under on-farm conditions Results

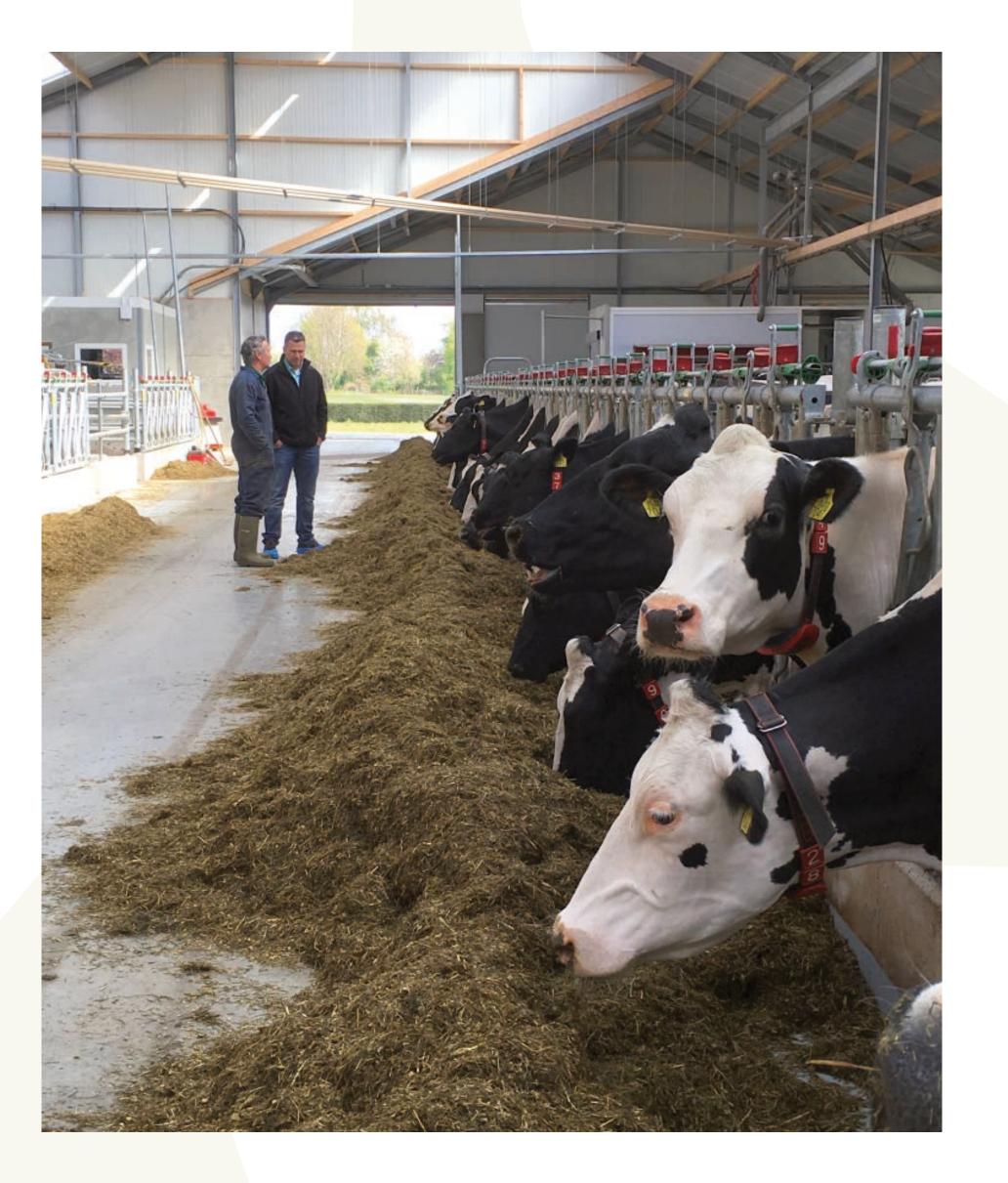
Revised version of the VERA test protocol for 'Housing and Management Systems' focussing on:

- NH₃, odour, dust emissions
- Related parameters (e.g. ventilation rate, CO₂, agronomic conditions)
- Operational stability of the system (e.g. uptime of system, consumption of electricity, water, chemicals).

Key amendments of the revised protocol

General

Introduction of 'Standard Reference Methods' (ISO 14793) — for higher flexibility in measurement methods but still assuring high measurement quality:


- Ammonia: impinger system
- Odour: dynamic olfactometry (EN 13725)
- Dust: gravimetric measurement (relevant EN standards)
- Air volume: fan-wheel anemometer or emission values derived from tracer gas

gronomic requirements

Aim: allow best possible transferability of the test results to other countries/farms.

- Comprehensive summary of agronomic requirements for an emission test
- Compliance with all national regulations on animal welfare, total environment, occupational health and safety and food safety
- Definition of standard dairy house = loose housing with cubicles
- Summary of national emission factors of VERA member countries

Criterion (Excerpt)	Example: Dairy cows
Animal	90–100%
occupation rate	
Herd composition	> 70% of house must be
	occupied by cows
Housing system in	> 2 months
use before test	
Production level	≥ 25 kg fat and protein
	corrected milk per cow and day
Feed composition	≥ 50% roughage, 160–180 g CP
	per kg dry matter

Inter-

Plan phase 1:

Comparison of the measurement devices for NH₃, CO₂ and accompanying parameters without sampling variability

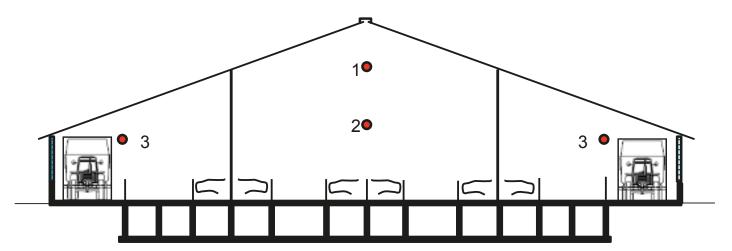
- Standardised gas measuring chamber with a mixture of different gases representing typical farm conditions.
- Test one measurement point in a 'real-life' animal house

Naturally ventilated buildings

Key alterations and major requirements:

Test design

Case-control design = preferred option or multi-site approach (more expensive, min. 4 test locations)


Deviation limits for a case-control approach Alternative test designs ('fixed case-control' or 'on-off') with specific requirements

Emission patterns

Depending on the animal weight and growth. 'Growth': stable (e.g. dairy cows), linear increase (e.g. fattening pigs) or exponential increase (e.g. broilers).

Must be considered in test plan.

Sampling points (CO₂ balance method)

Ingoing air: \geq 1 sampling point outside the house at all open side walls (\geq 5 m distance). Other sources: to be considered/measured.

Sampling frequency

≥ 6 measurement periods of ≥ 24 hours distributed over one year.

Number: depends on power of test design.

Distribution: depends on the emission pattern.

- Calibration, validation, on-site verification Good laboratory practice emphasised (e.g. calibration procedures, estimates of measurement uncertainties according to the requirements of ISO 17025 to be documented and reported).
- Calculation of the emission value
 CO₂ balance method: CIGR calculation rules.
 → open Excel calculation tool

International VERA Secretariat

Max-Eyth-Weg 1, D-64823 Gross-Umstadt +49 69 24788 -639, info@vera-verification.eu

Acknowledgements:

Danish Environmental Protection Agency
Dutch Ministry of Infrastructure and Environment
German Federal Ministry of Food and Agriculture (BMEL)