

Verification of emission-reducing procedures in naturally ventilated cow houses by using optimised measurement methods **Revision of the VERA test protocol "Housing Systems"**

Authors:

Iris Beckert¹ and VERA Commission¹: Anders Peter S. Adamsen², Peter Demeyer³, Eva Gallmann⁴, Ewald Grimm⁵, Peter Kai⁶, Eberhard Hartung⁷, Sabrina Hempel⁸, Julio Mosquera⁹, Nico Ogink⁹, Paul Robin¹⁰, Bjarne Schmidt Bjerg¹¹

¹International VERA Secretariat, Gross-Umstadt; ²SEGES, Aarhus, Denmark, ³ILVO, Merelbeke, Belgium, ⁴University of Hohenheim, Agrartechnik, Stuttgart, Germany, ⁵KTBL, Darmstadt, Germany, ⁶Aarhus University, Denmark, ⁷University of Kiel, Kiel, Germany, ⁸ATB, Potsdam, Germany, ⁹Wageningen Livestock Research, Wageningen, The Netherlands, ¹⁰INRA, Rennes, France, ¹¹University of Copenhagen, IVH, Frederiksberg, Denmark

- ctives Make environmental efficiency and operational stability of emission-reducing procedures transnationally comparable! **B**
 - By using uniform and scientific test procedures and develop a revised test and verification standard
 - Meet special challenges of emission measurements in naturally ventilated animal houses

Connect expert knowledge and results of scientific studies from Denmark, the Netherlands, Germany,

- Belgium, France and Switzerland as it is
- common practice during the creation of
- international standards.

Plan an inter-laboratory test to improve the assessment of measurement uncertainties under on-farm conditions

- ults Revised version of the VERA test protocol for 'Housing and Management Systems' foes cussing on:
 - NH₃, odour, dust emissions

0

bu

ventilated

Natura

- Related parameters (e.g. ventilation rate, CO₂, agronomic conditions)
- Operational stability of the system (e.g. uptime of system, consumption of electricity, water, chemicals).

Key amendments of the revised protocol

ene

G

omic

gron

4

0b

Introduction of 'Standard Reference Methods' (ISO 14793) – for higher flexibility in measurement

Key alterations and major requirements: SB

- Test design
 - Case-control design = preferred option or multi-site approach (more expensive, min. 4 test

- methods but still assuring high measurement quality:
 - Ammonia: impinger system
 - Odour: dynamic olfactometry (EN 13725)
 - Dust: gravimetric measurement (relevant EN standards)
- Air volume: fan-wheel anemometer or emission values derived from tracer gas

Aim: allow best possible transferability of the requirements test results to other countries/farms.

- Comprehensive summary of agronomic requirements for an emission test
- Compliance with all national regulations on animal welfare, total environment, occupational health and safety and food safety
- Definition of standard dairy house = loose housing with cubicles
- Summary of national emission factors of VERA member countries

Criterion (Excerpt)	Example: Dairy cows
Animal	90–100%
occupation rate	

locations)

Deviation limits for a case-control approach Alternative test designs ('fixed case-control' or 'on-off') with specific requirements

Emission patterns

Depending on the animal weight and growth. 'Growth': stable (e.g. dairy cows), linear increase (e.g. fattening pigs) or exponential increase (e.g. broilers).

Must be considered in test plan.

Sampling points (CO, balance method)

Ingoing air: \geq 1 sampling point outside the house at all open side walls (≥ 5 m distance). Other sources: to be considered/measured.

• Sampling frequency

 \geq 6 measurement periods of \geq 24 hours distributed over one year.

Number: depends on power of test design. Distribution: depends on the emission pattern.

Herd composition	> 70% of house must be occupied by cows
Housing system in use before test	> 2 months
Production level	≥ 25 kg fat and protein corrected milk per cow and day
Feed composition	≥ 50% roughage, 160—180 g CP per kg dry matter

Comparison of the measurement devices for NH₃, CO₂ and accompanying parameters without sampling variability

- Standardised gas measuring chamber with a
- mixture of different gases representing typical
- farm conditions.

σ

0

- σ Test one measurement point in a 'real-life' animal house
- Calibration, validation, on-site verification Good laboratory practice emphasised (e.g. calibration procedures, estimates of measurement uncertainties according to the requirements of ISO 17025 to be documented and reported).
- Calculation of the emission value CO₂ balance method: CIGR calculation rules. → open Excel calculation tool

International VERA Secretariat

Vlinderweg 6 2623 AX Delft The Netherlands

www.vera-verification.eu

Acknowledgements:

Danish Environmental Protection Agency

Dutch Ministry of Infrastructure and Environment

German Federal Ministry of Food and Agriculture (BMEL)

info@vera-verification.eu